Doubly Exponentially Many Ingleton Matroids
نویسندگان
چکیده
منابع مشابه
Exponentially Dense Matroids
This thesis deals with questions relating to the maximum density of rank-n matroids in a minor-closed class. Consider a minor-closed class M of matroids that does not contain a given rank-2 uniform matroid. The growth rate function is defined by hM(n) = max (|M | : M ∈M simple, r(M) ≤ n) . The Growth Rate Theorem, due to Geelen, Kabell, Kung, and Whittle, shows that the growth rate function is ...
متن کاملA Doubly Exponentially Crumbled Cake
We consider the following cake cutting game: Alice chooses a set P of n points in the square (cake) [0, 1], where (0, 0) ∈ P ; Bob cuts out n axis-parallel rectangles with disjoint interiors, each of them having a point of P as the lower left corner; Alice keeps the rest. It has been conjectured that Bob can always secure at least half of the cake. This remains unsettled, and it is not even kno...
متن کاملExponentially many supertrees
The amalgamation of leaf-labelled trees into a single supertree that displays each of the input trees is an important problem in classification. Clearly, there can be more than one (super) tree for a given set of input trees, in particular if a highly unresolved supertree exists. Here, we show (by explicit construction) that even if every supertree of a given collection of input trees is binary...
متن کاملProjective geometries in exponentially dense matroids. II
We show for each positive integer a that, if M is a minor-closed class of matroids not containing all rank-(a+ 1) uniform matroids, then there exists an integer c such that either every rank-r matroid in M can be covered by at most r rank-a sets, or M contains the GF(q)-representable matroids for some prime power q and every rank-r matroid inM can be covered by at most cq rank-a sets. In the la...
متن کاملIterated Point-Line Configurations Grow Doubly-Exponentially
Begin with a set of four points in the real plane in general position. Add to this collection the intersection of all lines through pairs of these points. Iterate. Ismailescu and Radoičić (2003) showed that the limiting set is dense in the plane. We give doubly exponential upper and lower bounds on the number of points at each stage. The proof employs a variant of the Szemerédi-Trotter Theorem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2018
ISSN: 0895-4801,1095-7146
DOI: 10.1137/17m1160094